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Cranking in isospace

Applications to neutron-proton pairing and the nuclear symmetry energy
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Abstract. Isoscalar pairing interaction and nuclear symmetry energy are investigated by means of the
iso-cranking technique. Iso-cranking represents the lowest order approximation to isospin projection after
variation. Due to its internal simplicity, it offers a very intuitive understanding of the structure of the
nuclear symmetry energy as well as the response of the isoscalar and isovector pairing versus isospin.

PACS. 21.60.Jz Hartree-Fock and random-phase approximations

1 Introduction

An adequate treatment of the isospin degree of freedom is
crucial for our understanding of low-energy nuclear struc-
ture excitations. Hereafter, we shall present two appli-
cations of the isospin cranking model, which represents
the lowest order approximation to isospin projection after
variation. Because of its internal simplicity, iso-cranking
offers an intuitive understanding to the underlying mech-
anisms of the isoscalar pairing phenomenon and allows to
unveil the physical origin of the nuclear symmetry energy
strength.

We will start with a brief discussion of the isovector
and isoscalar pair fields different response to rotation in
isospace [1]. The destructive role of the isospin degree of
freedom on the isoscalar pair field and, simultaneously, the
neutrality of the isovector pair field can be easily and intu-
itively understood via a direct analogy between rotations
in isospace and real space, respectively.

In the second part we will focus on the microscopic
structure of the nuclear symmetry energy (NSE) strength
within the Skyrme-Hartree-Fock (SHF) method [2]. We
will demonstrate that the strength of the NSE originates
in part from the discreteness of the single-particle levels
characterized by the mean level spacing ε which is gov-
erned essentially by the isoscalar mean-potential. We will
discuss the influence of non-local effects on ε and, in turn,
on the second component of the NSE, namely on the part
related directly to the mean isovector potential. We will
demonstrate that this part, in spite of the apparent com-
plexity of the Skyrme mean isovector potential, can be
characterized essentially by a single number, the strength
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of the effective isospin-isospin vTT = 1
2κT̂

2 interaction,
with surprisingly high accuracy.

2 Neutron-proton pairing

Isoscalar (T = 0) np-pairing is expected to develop in
N ≈ Z nuclei. In these nuclei, the neutron and proton
wave functions overlap most strongly and the isoscalar
two-body NN interaction is on the average stronger than
the isovector (T = 1) NN interaction [3]. However, the
T = 0 matrix elements (m.e.) are, unlike the T = 1
m.e., fragmented over different spin (J) values with almost
equal preference for anti-parallel J = 1 and parallel J = 2j
couplings and with sizable m.e. corresponding to interme-
diate J-coupling. Moreover, the (T = 0, J) m.e. are weaker
than the dominant (T = 1, J = 0) m.e. These two facts
tend to erode the potential fingerprints of the isoscalar
np-paired condensate causing interpretational difficulties
both on the experimental as well as theoretical side.

In deformed nuclei, however, individual features of the
(T = 0, J) m.e. are expected to become averaged. Hence,
one can assume that the basic features of nuclear pairing
in deformed N ≈ Z nuclei can be reasonably accounted
for by using a standard seniority-type T = 1 pairing in-
teraction and a schematic T = 0 np-pairing interaction:

Ĥ = ĥsp −G1

∑

µ=0,±1
P †1µP̂1µ −G0P̂

†
0 P̂0, (1)

where P †0 = 1√
2

∑

α>0(â†αnâ
†
ᾱp−â†αpâ

†
ᾱn) denotes the T = 0

pair creation operator and ĥsp =
∑

α,τ=n,p eατ â
†
ατ âατ

stands for the deformed phenomenological Woods-Saxon
potential. The pure HFB (or BCS) approximation to the
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model Hamiltonian (1) essentially exclude the most inter-
esting mixed-phases, quartetting-type solutions, see [4,5].
To obtain such a solution, the theory requires a supple-
mentary spontaneous isospin symmetry breaking mech-
anism which can be introduced via the approximate
particle-number symmetry projection of Lipkin-Nogami
type [5].

A possible manifestation of the np-pairing collectivity
is the so called Wigner effect, an extra binding energy
in N = Z nuclei. Within the mean-field approach, the
Wigner energy is associated with a linear (∼ T ) contribu-
tion to the symmetry energy:

Esym =
1

2
asymT (T + λ). (2)

This term, which is indeed due to the T = 0 interaction
as indicated by shell-model studies [6], is essentially be-
yond the conventional mean-field and must be introduced
as a phenomenological correction. Hence, as a first ap-
proximation one can ascribe its microscopic origin to the
T = 0 pairing which, when strong enough, can naturally
account for the missing binding energy, see ref. [5]. A fit
to the Wigner energy allows the determination of the un-
known strength of the T = 0 pairing interaction G0. The
consistency of this approach can be tested later by calcu-
lating the lowest T = 0, 1, 2 isobaric excitations in N = Z
nuclei. Such an approach was undertaken in ref. [1] where
an excellent agreement with the data was obtained. The
key to this success was the proper treatment of both the
quasi-particle (qp) excitations and the isospin degree of
freedom. The latter was treated within the iso-cranking
approximation to the isospin variation after projection:

Ĥω = Ĥ − ωT̂x. (3)

The results of our calculations are presented in fig. 1.
To understand the role of qp and isospin degrees of free-
dom let us concentrate on the case of the T = 1 and
T = 2 excitations in even-even (e-e) N = Z nuclei. The
T = 2, Tz = 0 excitations belong to the isospin quintu-
plet T = 2, Tz = 0,±1,±2, of J = 0 states that include
the ground states of N − Z = ±4 nuclei. Hence they are
treated as 0qp HFB vacuum cranked in isospace to restore
the proper value of isospin 〈T̂x〉[≡

√

T (T + 1)] =
√

6. The
T = 1 states, on the other hand, belong to the Tz = 0,
±1 triplet of J 6= 0 states. Hence, their HFB treatment
requires both time reversal symmetry breaking and the
isospin symmetry restoration. This can be achieved by iso-
cranking the appropriate 2qp excitation till the frequency
is reached where 〈T̂x〉 =

√
2 .

The model predicts that the T = 2 states are purely
isovector-paired. The isocranking frequency necessary to
reach 〈T̂x〉 =

√
6 is, in these cases, large enough to break

the antiparallel (in isospace) coupled isoscalar pairs, caus-
ing a Meißner-type phase transition, see fig. 2. In spite
of the good agreement to the data the model has a clear
drawback; the isoscalar pair-gaps necessary to reproduce
the data are nonphysically large. This is a direct conse-
quence of the lack of the isovector mean-potential (in ex-
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Fig. 1. The experimental (•) and calculated (◦) excitation
energies of the lowest T = 2 states and the lowest T = 1 states
in e-e N = Z nuclei, and the difference between the excitation
energies of the lowest T = 1 and the lowest T = 0 states in o-o
N = Z nuclei, see text and refs. [1,7] for further details.
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Fig. 2. Isoscalar (•) and isovector (◦) pair-gap parameters
versus iso-cranking frequency calculated for 48Cr. The figure
shows the phase transition from mixed pairing phase to purely
isovector pairing phase induced by the fast iso-rotation. Note
that ∆T=1 stays fairly constant versus ω because iso-rotation
cannot break isovector pairs having parallel coupled isospins.

cited states of N = Z nuclei) in the sp model Hamilto-
nian (1). Consequently, the additional binding energy due
to the np-pairing is used partly to restore the symmetry
energy strength asym, and partly to enhance the linear
term to its empirical value of λ ≈ 1.25 in N ≈ Z nuclei [8,
9,10] 1.

3 The nuclear symmetry energy

The missing isovector potential can be simulated by
adding an isospin-isospin interaction, see [11], to the

1 See also J. Jänecke, these proceedings.
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Fig. 3. Part (a) shows the mean level spacing ε calculated
using the isoscalar part of the SHF potential. Part (b) shows

the isoscalar effective mass scaled mean level spacing ε? = m
?

m
ε.

Note that for larger T the value of ε? is almost constant and
lies in between the empirical limits for the mean level spacing
marked by the shaded area. Part (c) shows the calculated value
of κ(A). Note that this value is almost perfectly independent
of T . The calculations were done for the A = 68 isobaric chain
using several SF parameterizations as indicated in the legend.

Routhian (3):

Ĥω = Ĥ − ωT̂+
1

2
κT̂T̂ −→ Ĥ − [ω − κ〈T̂〉]T̂. (4)

The Hartree approximation to (4) corresponds again to
the isospin cranking model but with an effective, isospin
dependent frequency. Within the HF approximation (no
pairing) the model Routhian (4) gives rise to the following
symmetry energy formula [2]:

Esym =
1

2
(ε + κ)T 2 +

1

2
κT. (5)

Let us observe that, at variance with the standard text-
book interpretation, part of the symmetry energy strength
asym = ε+κ is related directly to the mean spacing of nu-
clear levels at the Fermi energy, ε, and not to the kinetic
energy.

The schematic formula (5), can be tested within the
fully self-consistent Skyrme-Hartree-Fock (SHF) model.
This is due to the fact that the Skyrme force in-
duced local energy density functional can be divided into
isoscalar t = 0 and isovector t = 1 parts ESkyrme =
∑

t=0,1

∫

d3rHt(r) where

Ht(r) = Cρ
t ρ

2
t +C∆ρ

t ρt∆ρt+Cτ
t ρtτt+CJ

t J
2
t +C∇J

t ρt∇·Jt.
(6)

The coupling constants C are either density independent
or depend only on the isoscalar density. The definitions
of all local densities as well as the relations between the
coupling constants C and the auxiliary parameters of the
Skyrme force (SF) can be found, for example, in ref. [12].

In turn, the isoscalar Γ0 HF potential depends only
on the isoscalar C0 coupling constants, while the isovec-
tor HF potential Γ1 is defined ultimately by the isovector
C1 coupling constants. This property allows us to perform
precise tests of eq. (5) using the following two-step proce-
dure. In the first step we switch off the isovector potential
Γ1 ≡ 0 by setting all C1 ≡ 0. The calculated excitation
energy with respect to the N = Z (at A = const) nu-

cleus, ∆E
(t=0)
HF , can be compared to ∆E

(t=0)
HF = 1

2εT
2.

In this way, one can extract the information about ε.
In the next step, we perform full SHF calculations and

compare the quantity ∆E
(t=1)
HF ≡ ∆EHF − ∆E

(t=0)
HF to

∆E
(t=1)
HF = 1

2κT (T + 1), giving us information about κ.

Our calculations, performed by using the code
HFODD [13], show certain generic features which are il-
lustrated in fig. 3. Namely, for a given value of A and
for small values of N − Z, the values of ε(A, Tz) change
quite rapidly. They tend to stabilize for N −Z ≥ 8 where
ε(A, Tz) → ε(A). The value of the isoscalar-effective-mass

scaled ε?(A) = m?

m ε(A) is 55/A < ε?(A) < 66/A, i.e. it lies
within the experimental limits. The values of κ(A, Tz) sta-
bilize much faster, already for N−Z > 4 κ(A, Tz) → κ(A),
showing that κ(A) is free from the kinematic (shell) ef-
fects with surprisingly high accuracy. Let us observe that
these features are common for all the tested parameter-
izations of the SF. The only exception is the SkO force
with its unconventionally strong isovector component of
the spin-orbit term. Such a spin-orbit term is inspired by
the relativistic mean-field (RMF) models [14], and indeed
our recent study shows that the RMF results follow qual-
itatively the SkO results [15].

All these features are nicely confirmed by large-scale
calculations including isobaric chains of even-even nuclei
from A = 20 till A = 128, see [16]. These calculations
were performed specifically to establish the mass-number
dependence of the nuclear symmetry energy, see fig. 4.
The figure clearly shows that i) the values of ε(A) heavily
depend on the kinematics (shell effects); ii) in contrast,
the values of κ(A) are almost unaffected by the kinemat-
ics; iii) both ε(A) and κ(A) show clear surface ∼ 1/A4/3

dependence reducing the dominant volume term ∼ 1/A.
Considering only the two lowest-order expansion terms:

ε(A) =
εV
A
− εS

A4/3
; κ(A) =

κV

A
− κS

A4/3
, (7)

one can establish the volume and the surface contributions
to ε and κ. For the case of the SLy4 force the ratio of the
surface to the volume parameters equals rε ≡ εS/εV ≈
1.56 and rκ ≡ κS/κV ≈ 1.45, i.e. rε ≈ rκ ≈ 3/2. The
value of rε can be estimated based on the semi-classical
formula of the level density developed for a diffuse-wall
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Fig. 4. The values of ε?(A) and κ(A) calculated for the iso-
baric chains of e-e nuclei from A = 20 till 128. The curves fit-
ting the calculated points and their parameters are indicated
in the figure. The differences between the smooth trends and
the calculated points are also shown. These curves nicely illus-
trate that ε? strongly depends on the shell effects while κ is
essentially independent of the kinematics.
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lated using the SLy4-SHF approach for several isobaric chains
of nuclei. Note that ∆Ekin does not show any systematic trend
when plotted versus N − Z.

potential well by Stocker and Farine [17]:

ε(A) ∼ g(εF )−1 ∼ 1

A

(

1− π

4k
(B)
F

SM

VM
+ . . .

)

, (8)

where VM and SM denote the volume and the surface of
nuclear matter distribution, respectively. The value of the

bulk Fermi momentum is k
(B)
F ≈ 1.36 fm−1.

The volume coefficient evaluated according to eq. (8)
is unrealistic since it corresponds to the Fermi gas model
estimate. However, assuming spherical geometry SM

VM
≈

3
roA1/3 , one can expect a rather reliable estimate for the

ratio rε. Adopting for ro ≈ 1.14 fm, i.e. the value con-
sistent with the standard Skyrme force saturation den-
sity ρ0 ≈ 0.16 fm−1, one obtains the ratio of the surface
to volume contribution to the symmetry energy equal to

rε ≈ 3π

4k
(B)
F ro

≈ 1.52 which almost perfectly matches the

value calculated for the SLy4 force.
All these facts seem to confirm very nicely the cor-

rectness of the symmetry energy formula (5), and in turn
the reliability of the iso-cranking technique. Let us finally
point out that the standard, Fermi gas model driven ex-
planation of the symmetry energy coefficient as being par-
tially due to the kinetic energy has no support in our cal-
culations. Indeed, the expectation value of the SHF kinetic
energy does not correlate with N − Z as shown in fig. 5.

4 Summary

Applications of the isospin cranking model to np-pairing
and the nuclear symmetry energy were briefly discussed.
It is demonstrated that this generalized rotation gives
an intuitive and simple understanding of the response of
the isovector and isoscalar pair-fields with respect to the
isospin degree of freedom.

It is also shown that the predictions of the iso-cranking
model concerning the nuclear symmetry energy are consis-
tent with the self-consistent SHF results. The arguments
are given, that part of the symmetry energy strength,
which is traditionally connected to the kinetic energy, is
related in fact to the mean-level spacing. Moreover, it
is demonstrated that the SHF isovector mean-potential
can be characterized by an effective two-body interaction
vTT = 1

2κT̂
2 with unexpectedly high precision.
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